정보 검색(Information Retrieval) 연구 개론
예전에 잠깐 정보 검색 연구를 소개한 적이 있지만, 앞으로 정보검색론(Information Retrieval이하 IR)에 대해 써볼 생각입니다. 아직 풋내기 대학원생이지만, 지난 1년간의 공부를 정리하고 앞으로의 방향을 잡아보는 차원에서 시작합니다.
IR은 웹 검색이다?
제 연구분야를 간단히 소개할 때 검색엔진을 연구한다고 말하곤 합니다. 그러면 보통 ‘검색엔진? 그거 다 연구된거 아냐?’ 라는 반응을 봅니다. 사실 저도 구글 등 상업용 검색엔진을 쓰면서 불편함을 많이 느끼지 못했기에 비슷한 의문을 가졌습니다.
하지만 IR은 단순히 웹 문서의 검색을 연구하는 것이 아닙니다. IR은 좀더 넓은 의미에서 사용자의 정보 욕구(information needs)를 만족시키는 정보물(information object)를 찾아주는 것을 목표로 하기 때문입니다. 웹 문서 검색이 가장 잘 알려진 분야인 것은 사실이지만, 우리가 ‘아 그게 뭐지?’, 혹은 ‘아 그것이 어디 있을까?’라고 궁금해 하는 순간순간이 모두 IR연구자들이 해결하고자 하는 문제인 것입니다. 실제 세상의 모든 유무형의 사물은 정보의 형태로 표현될 수 있으며, 이들 정보물의 양에 비해 사람의 인지능력은 항상 턱없이 부족하기에 검색 연구는 앞으로도 계속될 것입니다.
흔히 우리가 보는 웹 검색, 질문과 답변을 찾는 지식 검색, 뉴스 검색, 이미지와 비디오 검색, 지도와 전화번호 검색 이외에도 어떤 분야의 전문가를 찾아주는 전문가 검색, 도서 검색, 음악 검색, 제품 검색 등 검색의 대상에는 제한이 없습니다. 또한 현재 연구중인 RFID 기술 등이 보편화되어 세상의 모든 물체에 센서가 달리게 되면 실제 사물역시 검색의 대상이 될 수 있겠습니다.
검색의 방식 측면에서도 한국어로 검색어를 입력했을 떄 적절한 영어 문서를 찾아주는 교차어 검색(cross-language IR)이나 키워드가 아닌 질문 형태의 검색어를 받아 적절한 답(문서가 아닌)을 구해주는 질의 응답(question answering – 컴퓨터가 답변해주는 지식인이라고 생각하시면 됩니다.), 여러 곳에 나누어진 정보를 모아서 검색해주는 분산 검색(distributed IR) 역시 검색의 세부 분야로 연구되고 있습니다.
무엇을 어떻게 연구하나?
검색을 연구한다면 정확히 뭘 하는지 궁금하실 겁니다. 우선 사용자의 정보욕구는 검색어(query) 형태로 표현되기 때문에, 질의어를 분석하는 것이 필요합니다. 질의어에서 어구(phrase)나 사람 이름 등의 고유명사를 추출하기도 하고, 질의어에서 단어를 빼거나 추가하면 검색 결과가 좋아지는 경우가 많은데 관련된 기술을 질의어 확장(query expansion)이라고 합니다.
질의어가 분석되었다면 정보물(여기서는 문서를 가정)을 분석해야 할 것입니다. 문서는 미리 색인화(indexing)를 거쳐 속성 집합(feature set) 형태로 표현되는데, 이 속성에는 문서에 포함된 단어나 어구, 문서의 인기도나 최선성 등의 관련 정보가 모두 포함됩니다. 어떤 속성(feature)를 검색에 사용하느냐가 검색 성능을 좌우하기 때문에 검색회사나 연구자들은 검색에 도움이 되는 속성을 개발하느라 열심입니다. 상업용 검색엔진에는 수천개의 속성이 사용되고 있으며, 지금도 계속 추가된다고 하는군요!
질의어와 문서가 분석되고 나면 이를 비교해서 관련성(relevance)이 높은 문서 순으로 정렬해야 할 것입니다. 이를 위해 각 문서에 점수를 매기는데, 이때 사용되는 수식이 검색 모델입니다. 검색모델은 기본적으로 검색어와 문서의 유사성(textual similarity) 및 문서의 품질 등을 종합적으로 고려하여 순위를 매기는데, 검색어와 문서를 벡터로 놓고 비교하는 방법, 문서를 확률 변수로 보는 방법 등이 있지만 어느 모델이 더 우월한지는 결론이 나지 않은 상황입니다. 최근에는 각 속성간의 중요도를 자동으로 결정하는 기계학습 기반의 방법이 개발되어 널리 사용되고 있습니다.
검색 결과가 나온 다음에는 이를 평가해야 할 것입니다. 제가 검색 연구를 시작하기 전에 가장 궁금했던 부분인데, 결국에는 사람이 판단해준 결과를 바탕으로 검색 품질을 점수화하는 것이었습니다. 예컨데, 상위 10개 문서중 7개가 관련성이 있다면 0.7점을 주는 식이죠. 언뜻 간단하게 보이지만, 이 과정에는 비용도 많이 들어가고 고려해야 할 점이 많기에 검색 결과의 평가는 검색 연구의 중요한 축을 형성하고 있습니다.
아직 궁금하다면…
검색을 다루는 글이니만큼 참고자료도 ‘정보검색’ 이라는 키워드를 사용한 검색결과로 제공하겠습니다;) 목록을 보시면 위키피디아 페이지, 책 등의 자료가 첫페이지에 있는 것을 보실 수 있습니다. 저희학교 정보검색 수업 홈페이지도 있군요.
'검색연구동향' 카테고리의 다른 글
첫 논문 - 좋아하는 영화를 찾아주는 검색 기법은? (2) | 2009.04.03 |
---|---|
새로 나온 IR 교과서를 받아보고... (0) | 2008.12.03 |
SIGIR 2008의 교훈 - 질의어에 따라 검색 방식을 결정하라! (1) | 2008.10.03 |